UNIVERSITY OF KWAZULU-NATAL SCHOOL OF ENGINEERING CONTROL SYSTEMS 2 – ENEL4CS Examinations May 2014

Time: 2 hours Total marks: 70 Examiners:

Dr F Ghayoor Prof. M Braae

Instructions to candidates:

- 1) Attempt ALL questions. Questions do not carry equal marks.
- 2) Candidates are allowed to bring 1 A4 sheet of notes into the examination.
- 3) Calculators may be used.
- 4) Laplace and z-transform tables are attached. Nichols and inverse Nichols charts are attached.

Question 1 - System identification (15 marks)

Using the simple second order system, $P = \frac{b_0}{s^2 + a_1 s + a_0}$, as an example, explain the method used to obtain the parameters from measurements of arbitrary (but sufficiently exciting) inputs using least square estimate. (15)

Question 2 - Template and specification (20 marks)

Given $P(s) = \frac{k}{(s/\omega_n)^2 + 2\xi(s/\omega_n) + 1}$; $k \in [3,10], \omega_n \in [1,3], \xi = 0.7$ and a nominal plant $P_n(s) = \frac{3}{s^2 + 1.4s + 1}$

- a) Draw the plant template for $\omega = 2$ rad/s showing the nominal.
- b) Using your template form (2a) and the appropriate chart, find nominal bounds for the specifications,

$$\left|\frac{0.9}{(s+1)(s/2)^2 + (s/2) + 1}\right| \le \left|T_{Y/R}\right| \le \left|\frac{1.02}{(s/2)^2 + 0.8(s/2) + 1}\right|$$

(10)

(10)

If you do not have a sensible looking answer for Question (2a), you may use a template with the following points:

	P ₀			
P _{dB}	25	25	36	36
∠p	-105°	-27°	-27°	-105°

Question 3 - Describing function analysis (15 marks)

Friction controlled backlash has the input-output behaviour shown, with slope k=1 and dead-band 2δ .

- a) Sketch the output of the slack actuator for input $x(t) = X \sin \omega t$. (5)
- b) Given the following values of -1/N, analyze limit cycle possibilities for the loop transfer function,

$L = \frac{4}{s(s+1)(0.1s+1)}$ on an inverse Nichols chart. The bode plot for $L(j\omega)$ is given below.	(10)
--	------

X	0.055	0.060	0.075	0.100	0.200	0.400	1.000	10.00
dB(-1/N(X))	30.8	20.6	7.8	3.2	1.5	0.55	0.15	0.005
$\arg(-1/N(X))$	-170	-162	-136	-115	-105	-100	-96	-91

Question 4 - Digital design (20 marks)

a) Design a digital PI controller for the continuous time plant, $P(s) = \frac{3}{s/2+1}$ for the specification below. Allow 10° for sampling effect at the gain cross-over frequency. Specify sampling rate, *T*, and *G(w)*. (calculation of *G(z)* is not required.) (15)

i) Zero steady state error to a step output disturbance ii) $\left|\frac{1}{1+L}\right| \le -20 dB, \omega = 1 \text{ rad/s}$ iii) $\left|\frac{1}{1+L}\right| \le 6 dB, \forall \omega$

b) Given a digital PI controller, $G(w) = \frac{K_p(w + \frac{1}{T_i})}{w}$ and sampling time *h*, write down the controller algorithm (in terms of K_p , T_i and *h*) as a difference equation. (5)

$P_{Z}(z) = \frac{z-1}{z} Z_{s} \left\{ \left[\mathcal{L}^{-1} \left\{ \frac{P_{s}(s)}{s} \right\} \right]_{t=iT} \right\}$	1	not defined	$\frac{T}{z-1}$	$\frac{T^2(z+1)}{2(z-1)^2}$	$\frac{1-e^{-aT}}{\left[z-e^{-aT}\right]a}$	$\left[\frac{\left[1-e^{-aT}(1+aT)\right]z+\left[e^{-aT}\left(e^{-aT}-1+aT\right)\right]}{\left[z-e^{-aT}\right]^2a^2}\right]$	$\left[1 - e^{-aT} \left(\cos(bT) + \frac{a}{b}\sin(bT)\right)\right] z + \left[e^{-aT} \left(e^{-aT} - \cos(bT) + \frac{a}{b}\sin(bT)\right)\right] z + \left[2^2 - 2ze^{-aT}\cos(bT) + e^{-2aT}\right] \left(a^2 + b^2\right)$	$\left[1 - e^{-aT} \left(\cos(bT) - \frac{b}{a}\sin(bT)\right)\right] z + \left[e^{-aT} \left(e^{-aT} - \cos(bT) - \frac{b}{a}\sin(bT)\right)\right]$ $\left[z^2 - 2ze^{-aT}\cos(bT) + e^{-2aT}\right] \left(a^2 + b^2\right) / a$	$\frac{1}{a^m} \left(1 - (z-1) \sum_{\nu=1}^m \frac{(-a)^{\nu-1}}{(\nu-1)!} \frac{\partial^{\nu-1}}{\partial a^{\nu-1}} \frac{\partial^{\nu-1}}{z-e^{-at}} \right) \text{or}$ $\frac{1}{a^m} \left(1 - (z-1) \sum_{\nu=1}^m \frac{(-aT)^{\nu-1}}{(\nu-1)!} \left[\frac{\partial}{\partial z} z \dots \right]^{\nu-1} \frac{1}{z-e^{-at}} \right)$	$(z-1)\frac{(-T)^m}{m!}\left[\frac{\partial}{\partial z}z\right]^m\frac{1}{z-1}$
$\mathcal{L}_{\{x(t)\}} / P_{s(s)}$	1	not defined	<u>1</u> s	$\frac{1}{s^2}$	$\frac{1}{s+a}$	$\frac{1}{(s+a)^2}$	$\frac{1}{s^2 + 2as + a^2 + b^2}$	$\frac{s+a}{s^2+2as+a^2+b^2}$	$\frac{1}{(s+a)^m}$	s ^m
x(t)	$\delta(t)$	any $f(t)$ with $f(iT) = \begin{cases} 1, i = 0 \\ 0, i \neq 0 \end{cases}$	1	ŧ	e-at	te-at	$e^{-at} \frac{\sin(bt)}{b}$	$e^{-at}\cos(bt)$	$\frac{t^{m-1}}{(m-1)!}e^{-at}, m \ge 1$	$\frac{t^{m-1}}{(m-1)!}, m \ge 1$
$Z\{x(iT)\}$	not defined	1	$\frac{z}{z-1}$	$\frac{T_z}{(z-1)^2}$	$\frac{z}{z-e^{-aT}}$	$\frac{T_{Z}e^{-aT}}{\left(z-e^{-aT}\right)^2}$	$\frac{ze^{-aT}\sin(bT)/b}{z^2 - 2ze^{-aT}\cos(bT) + e^{-2aT}}$	$\frac{z^2 - ze^{-aT}\cos(bT)}{z^2 - 2ze^{-aT}\cos(bT) + e^{-2aT}}$	$\frac{z(-1)^{m-1}}{(m-1)!} \frac{\partial^{m-1}}{\partial a^{m-1}} \frac{1}{z - e^{-at}} \text{ or }$ $\frac{z(-T)^{m-1}}{(m-1)!} \left[\frac{\partial}{\partial z} z_{\cdots} \right]^{m-1} \frac{1}{z - e^{-at}}$	$\frac{z(-T)^{m-1}}{(m-1)!} \left[\frac{\partial}{\partial z}z_{\cdots}\right]^{m-1} \frac{1}{z-1}$

RELATED LAPLACE, AND Z TRANSFORMS - TRANSIENTS AND TRANSFER FUNCTIONS

T is the time-interval of equidistant sampling of signals and holding of sequences. *a* can be a complex number. The given discrete-time transfer functions are based on *stair-case inputs*: $u(t) = u_i$ for $t_i \le t < t_i + T$. Printed on 28 January, 1999.

Dr.-Ing. habil. Eduard Eitelberg

