UNIVERSITY OF KWAZULU-NATAL
 SCHOOL OF ENGINEERING
 CONTROL SYSTEMS 2 - ENEL4CS

Examinations May 2014
Time: 2 hours
Total marks: 70
Examiners: Dr F Ghayoor
Prof. M Braae
Instructions to candidates:

1) Attempt ALL questions. Questions do not carry equal marks.
2) Candidates are allowed to bring 1 A 4 sheet of notes into the examination.
3) Calculators may be used.
4) Laplace and z-transform tables are attached. Nichols and inverse Nichols charts are attached.

Question 1 - System identification ($\mathbf{1 5}$ marks)

Using the simple second order system, $P=\frac{b_{0}}{s^{2}+a_{1} s+a_{0}}$, as an example, explain the method used to obtain the parameters from measurements of arbitrary (but sufficiently exciting) inputs using least square estimate.

Question 2 - Template and specification (20 marks)

Given $P(s)=\frac{k}{\left(s / \omega_{n}\right)^{2}+2 \xi\left(s / \omega_{n}\right)+1} ; \quad k \in[3,10], \omega_{n} \in[1,3], \xi=0.7 \quad$ and \quad a \quad nominal plant $P_{n}(s)=\frac{3}{s^{2}+1.4 s+1}$
a) Draw the plant template for $\omega=2 \mathrm{rad} / \mathrm{s}$ showing the nominal.
b) Using your template form (2a) and the appropriate chart, find nominal bounds for the specifications,

$$
\begin{equation*}
\left|\frac{0.9}{(s+1)(s / 2)^{2}+(s / 2)+1}\right| \leq\left|T_{Y / R}\right| \leq\left|\frac{1.02}{(s / 2)^{2}+0.8(s / 2)+1}\right| \tag{10}
\end{equation*}
$$

If you do not have a sensible looking answer for Question (2a), you may use a template with the following points:

	P_{0}			
$\|\mathrm{P}\|_{\mathrm{dB}}$	25	25	36	36
$\angle \mathrm{p}$	-105°	-27°	-27°	-105°

Question 3 - Describing function analysis (15 marks)

Friction controlled backlash has the input-output behaviour shown, with slope $k=1$ and dead-band 2δ.
a) Sketch the output of the slack actuator for input $x(t)=X \sin \omega t$.
b) Given the following values of $-1 / N$, analyze limit cycle possibilities for the loop transfer function,

University of KwaZulu-Natal: School of Engineering Control Systems 2 - ENEL4CS - May 2014

Page 2 of 2
$L=\frac{4}{s(s+1)(0.1 s+1)}$ on an inverse Nichols chart. The bode plot for $L(j \omega)$ is given below.

X	0.055	0.060	0.075	0.100	0.200	0.400	1.000	10.00
$d B(-1 / N(X))$	30.8	20.6	7.8	3.2	1.5	0.55	0.15	0.005
$\arg (-1 / N(X))$	-170	-162	-136	-115	-105	-100	-96	-91

Question 4 - Digital design (20 marks)

a) Design a digital PI controller for the continuous time plant, $P(s)=\frac{3}{s / 2+1}$ for the specification below. Allow 10° for sampling effect at the gain cross-over frequency. Specify sampling rate, T, and $G(w)$. (calculation of $G(z)$ is not required.)
i) Zero steady state error to a step output disturbance
ii) $\left|\frac{1}{1+L}\right| \leq-20 d B, \omega=1 \mathrm{rad} / \mathrm{s}$
iii) $\left|\frac{1}{1+L}\right| \leq 6 d B, \forall \omega$
b) Given a digital PI controller, $G(w)=\frac{k_{p}\left(w+\frac{1}{T_{i}}\right)}{w}$ and sampling time h, write down the controller algorithm (in terms of K_{p}, T_{i} and h) as a difference equation.
Related Laplace, and z transforms - Transients and transfer functions

$\mathcal{Z}\{x(i T)\}$	$x(t)$	$\mathcal{L}\{x(t)\} / P_{s}(s)$	$P_{z}(z)=\frac{z-1}{z} Z\left\{\left[\mathcal{L}^{-1}\left\{\frac{P_{s}(s)}{s}\right\}\right]_{t=i T}\right\}$
not defined	$\delta(t)$	1	1
1	any $f(t)$ with $f(i T)=\left\{\begin{array}{l} 1, i=0 \\ 0, i \neq 0 \end{array}\right.$	not defined	not defined
$\frac{z}{z-1}$	1	$\frac{1}{s}$	$\frac{T}{z-1}$
$\frac{T z}{(z-1)^{2}}$	t	$\frac{1}{s^{2}}$	$\frac{T^{2}(z+1)}{2(z-1)^{2}}$
$\frac{z}{z-e^{-a T}}$	$e^{-a t}$	$\frac{1}{s+a}$	$\frac{1-e^{-a T}}{\left[z-e^{-a T}\right] a}$
$\frac{T z e^{-a T}}{\left(z-e^{-a T}\right)^{2}}$	$t e^{-a t}$	$\frac{1}{(s+a)^{2}}$	$\frac{\left[1-e^{-a T}(1+a T)\right] z+\left[e^{-a T}\left(e^{-a T}-1+a T\right)\right]}{\left[z-e^{-a T}\right]^{2} a^{2}}$
$\frac{z e^{-a T} \sin (b T) / b}{z^{2}-2 z e^{-a T} \cos (b T)+e^{-2 a T}}$	$e^{-a t} \frac{\sin (b t)}{b}$	$\frac{1}{s^{2}+2 a s+a^{2}+b^{2}}$	$\frac{\left[1-e^{-a T}\left(\cos (b T)+\frac{a}{b} \sin (b T)\right)\right] z+\left[e^{-a T}\left(e^{-a T}-\cos (b T)+\frac{a}{b} \sin (b T)\right)\right]}{\left[z^{2}-2 z e^{-a T} \cos (b T)+e^{-2 a T}\right]\left(a^{2}+b^{2}\right)}$
$\frac{z^{2}-z e^{-a T} \cos (b T)}{z^{2}-2 z e^{-a T} \cos (b T)+e^{-2 a T}}$	$e^{-a t} \cos (b t)$	$\frac{s+a}{s^{2}+2 a s+a^{2}+b^{2}}$	$\frac{\left[1-e^{-a T}\left(\cos (b T)-\frac{b}{a} \sin (b T)\right)\right] z+\left[e^{-a T}\left(e^{-a T}-\cos (b T)-\frac{b}{a} \sin (b T)\right)\right]}{\left[z^{2}-2 z e^{-a T} \cos (b T)+e^{-2 a T}\right]\left(a^{2}+b^{2}\right) / a}$
$\begin{gathered} \frac{z(-1)^{m-1}}{(m-1)!} \frac{\partial^{m-1}}{\partial a^{m-1}} \frac{1}{z-e^{-a t}} \\ \frac{z(-T)^{m-1}}{(m-1)!}\left[\frac{\partial}{\partial z} z \cdots\right]^{m-1} \frac{1}{z-e^{-a t}} \end{gathered}$	$\frac{t^{m-1}}{(m-1)!} e^{-a t}, m \geq 1$	$\frac{1}{(s+a)^{m}}$	$\begin{gathered} \frac{1}{a^{m}}\left(1-(z-1) \sum_{v=1}^{m} \frac{(-a)^{v-1}}{(v-1)!} \frac{\partial^{v-1}}{\partial a^{v-1}} \frac{1}{z-e^{-a t}}\right) \\ \frac{1}{a^{m}}\left(1-(z-1) \sum_{v=1}^{m} \frac{(-a T)^{v-1}}{(v-1)!}\left[\frac{\partial}{\partial z} z \cdots\right]^{v-1} \frac{1}{z-e^{-a t}}\right) \end{gathered}$
$\frac{z(-T)^{m-1}}{(m-1)!}\left[\frac{\partial}{\partial z} z \ldots\right]^{m-1} \frac{1}{z-1}$	$\frac{t^{m-1}}{(m-1)!}, m \geq 1$	$\frac{1}{s^{m}}$	$(z-1) \frac{(-T)^{m}}{m!}\left[\frac{\partial}{\partial z} z \cdots\right]^{m} \frac{1}{z-1}$

T is the time-interval of equidistant sampling of signals and holding of sequences. a can be a complex number.
The given discrete-time transfer functions are based on stair-case inputs: $u(t)=u_{i}$ for $t_{i} \leq t<t_{i}+T$.
Printed on 28 January, 1999.

