
Digital Processes: ENEL4DP June 2014

Page 1 of 7

University of KwaZulu-Natal

School of Engineering

Examinations: June 2014

ENEL4DP : Digital Processes
Duration: 2 Hours Marks: 100

Examiners : Prof H. Xu (Internal)

 : Dr. M. Ohanga(External)

Instructions : 1. Answer all questions.

 2. This is not an open book exam and no notes may be used, either electronic or

handwritten.

 3. Questions (4.1), (4.2), (4.3), (4.4), (5.1), (5.2(a)) , (5.2(b)) and (6) must be

answered on the attached answer sheet, which must be detached and handed

in with your answer book. Ensure that you fill in your student number.

 4. Questions 1, 2 and 3 should be answered in the answer book.

Question 1 VHDL [10marks]

Write a VHDL entity and an architecture for an-8-bit, parallel-to-serial converter as shown in

Fig.1.1 below.

Fig. 1.1

Question 2 VHDL [10 marks]

Figure 2.1 shows part of the MIPS finite state machine from lecture. Control values not shown in

each state are assumed to be 0. The entity of the finite state machine is given below. You are

required to finish the architecture of the entity. The format of MIPS instruction is given as:

31-26:opcode 25-21: rs 20-16: rt 15-11: rd 10-6: shamt 5-0: func

Opcode 0 is R-type instruction; Opcode 4 is BEQ (Branch instruction).

Digital Processes: ENEL4DP June 2014

Page 2 of 7

Figure 2.1 Part of the MIPS finite state machine

Question 3 VHDL [20 marks]

A register file is a collection of registers in which any register can be read or written by specifying

the number of register in the file. There are two read ports and one write port. Suppose there are 4

registers in the register file. Each register contains 8 bits. An implementation of the read ports is

shown in Fig. 3.1

(3.1) (5 marks) Write the full VHDL code to implement an 8-bit register;

(3.2) (5 marks) Write the full VHDL code to implement an 8-bit 4-to-1 multiplexer;

(3.3) (10 marks) Write the full VHDL code to implement the read ports by using the 8-bit

register and 8-bit 4-to-1 multiplexer components.

IorD=0

MemRead=1

IRWrite=1

ALUSrcA=0

ALUSrcB=01

ALUOp=ADD

PCSource=0

PCWrite=1

ALUSrcA=0

ALUSrcB=11

ALUOp=ADD

ALUSrcA=1

ALUSrcB=00

ALUOp=SUB

PCSource=1

PCWrite=zero

ALUSrcA=1

ALUSrcB=00

ALUOp=Fun

RegDst=1

MemToReg=0

RegWrite=1

Instruction fetch

Instruction decoding Op=BEQ

Op=R-Type

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.STD_LOGIC_ARITH.ALL;

USE IEEE.STD_LOGIC_SIGNED.ALL;

ENTITY CONTROL_FSM is

 Port (OP :in STD_LOGIC_VECTOR (5 downto 0);

 CLOCK, RESET: in STD_LOGIC; --clock reset

 PCWrite, IorD, MemRead, MemWrite: out STD_LOGIC;

 IRWrite, MemtoReg, PCSource : out STD_LOGIC;

 ALUOp, ALUSrcB : out STD_LOGIC_VECTOR(1 downto 0);

 ALUSrcA, RegWrite, RegDst: out STD_LOGIC);

END CONTROL_FSM;

Digital Processes: ENEL4DP June 2014

Page 3 of 7

Fig.3.1 Implementation of the read ports

Question 4 Single Cycle Datapath Design (20 marks)

This question is based on the single-cycle datapath of MIPS shown in Figure 4.1.

(4.1) [5 marks] Clearly mark all wires that are active during the execution of addi instruction.

addi instruction format : addi $rt, $rs, imm # $rt <= $rs +imm

31-26:5 (decimal) : OP 25-21: rs 20-16:rt 15-0:imm

Figure 4.1 The single-cycle datapath of MIPS

Digital Processes: ENEL4DP June 2014

Page 4 of 7

(4.2) [7 marks] The single cycle datapath is shown in Figure 4.1. Show what changes are needed

to support jr instruction. You should only add wires and multiplexers to the datapath; do not

modify the main functional units themselves (the memory, Register file and ALU).

jr instruction format : jr $rs PC <= $rs ;$rt<=PC+4

31-26: OP=0 25-21: rs 20-16:rt 15-0:imm

(4.3)[4 marks] Specify how all control signals should be set for jr instruction. Use X for don’t

care. ALUOp can be ADD or SUB.

Instru. RegDst RegWrite ALUSrc PCSrc MemRead MemWrite MemtoReg ALUOp

jr

(4.4)[4 marks] Given the functional unit latencies as shown in Table 4.1, calculate the minimum

time in Table 4.2 to perform jr instruction.

Table 4.1

Function Unit Latency

Memory read or write 2 ns

ALU 2 ns

Register File read or write 1 ns

Table 4.2

Instruction Minimum Time Explain

jr

Question 5 Multicycle Datapath [20 marks]

(5.1) [5 marks] Jump is executed in the multicycle datapath shown in Fig. 5.1. Assume that

PC=(A000 0000)H, and Memory(PC)=(0809 0000)H , and Reg(n)=n. Complete Table 5.1 with

32-bit hex values, or with an X for don’t care until the instruction completes. This question is

negative marking, 1mark/error.

Digital Processes: ENEL4DP June 2014

Page 5 of 7

Fig. 5.1 The Multicycle datapath of MIPS

Table 5.1

Register Clock 1 Clock 2 Clock 3 Clock 4 Clock 5

PC

IR

MDR

A

B

ALUout

(5.2) [15 marks] Assume that the ALU can perform the max2 operation (i.e., return the greater of

two inputs):

 alu_result = A_input if A_input >B_input;

ALU operation for this instruction is max2.

Given this improved ALU, implement the max4 instruction. The max4 instruction writes the

largest value of four registers into register rd:

 max4 $rs, $rt, $rd, $rm $rd=max($rs, $rt, $rd, $rm)

Note that register rd is both an input and an output. Instruction max4 has the following format:

31-26:op 25-21: rs 20-16: rt 15-11: rd 10-6: rm 5-0: func

Result

Zero

ALU

ALUOp

 0
 M
 u
 x

 1

ALUSrcA

0
1
2
3

ALUSrcB

Read

reg 1

Read
reg 2

Write

register

Write

data

Read
data 2

Read

data 1

Register

file

RegWrite

Address

Memory

Mem
Data

Write
data

Sign

extend
Shift

left 2

0
M
u
x

1

PCSrc

PC

 A

 B
 ALU

Out

4 [31-26]
[25-21]
[20-16]
[15-11]

[15-0]

Instr

register

Memory
data

register

 IRWrite

 0
 M
 u
 x
 1

 RegDst

 0
 M
 u
 x

 1

 0
 M
 u
 x

 1

IorD

MemRead

MemWrite

PCWrite

 MemToReg

Digital Processes: ENEL4DP June 2014

Page 6 of 7

(a) [7 marks] This question is based on the multicycle datapath of MIPS shown in Figure 5.1 .

Show what changes are needed to support max4. You should only add wires and multiplexers to

the datapath; do not modify the main functional units themselves (the memory, Register file and

ALU).

(b) [8 marks] Complete the finite state machine diagram shown in Figure 5.2 for the max4

instruction. Control values not shown in each state are assumed to be 0. Remember to account for

any control signals that you added or modified in the previous part of the question!

Figure 5.2 The finite state machine of improved MIPS

Question 6 Pipeline Datapath[20 marks]

This question is based on the pipelined datapath shown in Figure 6.1. Consider the following

piece of code.

IorD=0

MemRead=1

IRWrite=1

ALUSrcA=0

ALUSrcB=01

ALUOp=ADD

PCSource=0

PCWrite=1

ALUSrcA=0

ALUSrcB=11

ALUOp=ADD

ALUSrcA=1

ALUSrcB=00

ALUOp=SUB

PCSource=1

PCWrite=zero

ALUSrcA=1

ALUSrcB=00

ALUOp=Fun

ALUSrcA=1

ALUSrcB=10
ALUOp=ADD

RegDst=1

MemToReg=0

RegWrite=1

IorD=1

MemWrite=1

IorD=1

MemRead=1

RegDst=0

MemToReg=1

RegWrite=1

Instruction fetch

Instruction decoding Op=BEQ

Op=R-Type

Op=

LW/ SW
Op=SW

Op=LW

Op=MAX4

Digital Processes: ENEL4DP June 2014

Page 7 of 7

If Add $7, $8, $9 is at WB stage, fill in the correct datapath values for twenty-three question

marks ? in the datapath. There is two ? in the IF stage, seven ? in the ID stage, ten ? in EX,

two ? in MEM, and two ? in WB.

 Again, please :

o Write your answers directly on the diagram on the attached answer sheet.

o Show decimal values.

o Assume that registers initially contain their number plus 100: $5 contains 105, $8

contains 108, etc., and Memory[xx] = xx. All values are decimal.

o Add format: add $Rd, $Rs, $Rt; Lw format: Lw $Rt, offset($Rs).

o Write ‘X’ for any numbers that can not be determined.

Figure 6.1 The pipelined datapath

Add $7, $8, $9

Add $6, $7, $5

Add $5, $7, $6

Lw $3, 4($5)

