

# University of KwaZulu-Natal <br> School of Engineering <br> Electrical, Electronic \& Computer Engineering 

## MAIN EXAMINATIONS - NOVEMBER 2015

ENEL2FT: FIELD THEORY
Time allowed: $\mathbf{2}$ hours

## Instructions to Candidates:

1. This paper contains 4 questions
2. Answer any THREE questions.
3. All questions carry equal marks. The marks for each question/section are indicated.
4. Answers should show sufficient working steps to indicate the solution method used.
5. Any additional examination material is to be placed in the answer book and must indicate clearly the question number and the Student Registration number

## The following materials are provided:

1. Graph Paper
2. Mathematical Tables \& Formula Sheet

## Examiners

Prof. Thomas J.O. Afullo
Prof. Vrinjay Srivastava

Durban, November 2015

## Question 1 (25 Marks)

a) Four 10 nC positive charges are located in the $z=0$ plane at the corners of a square of length 8 cm on a side. A fifth 10 nC positive charge is located at a point 8 cm distant from the other charges. Calculate the magnitude of the total force on this fifth charge for $\varepsilon=\varepsilon_{0}$.
(7 marks)
b) A uniform volume charge density $\rho_{\mathrm{v}}=0.2 \mu \mathrm{C} / \mathrm{m}^{3}$ is present throughout the spherical shell extending from $r=3 \mathrm{~cm}$ to $r=5 \mathrm{~cm}$. If $\rho_{v}=0$ elsewhere, determine:
i) The total charge present throughout the shell
ii) The radius $r_{1}$ if half the total charge is located in the region $3 \mathrm{~cm}<\mathrm{r}<\mathrm{r}_{1}$.
(8 marks)
c) A circular disk of radius $\rho=4 \mathrm{~m}$, lying on the $\mathrm{z}=0$ plane, centred at $\mathrm{z}=0, \rho=0$, has surface charge density given by:

$$
\rho_{s}=\frac{10^{-4}}{\rho} C / m^{2}
$$

Determine, the electric field intensity $\vec{E}$ at point $P$ which is located at $\rho=0, \mathrm{z}=3 \mathrm{~m}$.
(10 marks)

## Question 2 (25 Marks)

a) The surface $x=0$ separates two perfect dielectrics. For $x>0$, dielectric material 2 has relative permittivity $\varepsilon_{r 2}=2.4$, while for $\mathrm{x}<0$, material 1 has $\varepsilon_{\mathrm{r} 1}=1$. If the electric flux density in region 1 is given by $\vec{D}_{1}=3 \hat{x}-4 \hat{y}+6 \hat{z} \mathrm{C} / \mathrm{m}^{2}$ determine:
i) $\quad \vec{E}$ and $\vec{D}$ in dielectric material 2.
ii) The angles that the $\vec{E}$ vectors make with the tangent in both media.
b) The electric flux density in a certain region is given (in cylindrical coordinates) by:

$$
\vec{D}=8 \rho \sin \phi \hat{\rho}+4 \rho \cos \phi \hat{\phi} C / m^{2}
$$

Determine:
i) The volume charge density, and evaluate it at $\mathrm{P}\left(2.6 \mathrm{~m}, 38^{\circ},-6.1 \mathrm{~m}\right)$
ii) How much charge is located in the region defined by: $0 \leq \rho \leq 1.8 \mathrm{~m}$; $20^{\circ} \leq \phi \leq 70^{\circ} ; 2.4 \leq z \leq 3.1 \mathrm{~m}$.
c) Let a filamentary current of 5 mA be directed from infinity to the origin on the positive $z$ axis and then back out to infinity on the positive $x$ axis. Find $\vec{H}$ at $P(0,1,0)$
(11 marks)

## Question 3 (25 Marks)

a) Two concentric spheres have a dielectric material of relative permittivity $\varepsilon_{\mathrm{r}}=3.12$ placed in the region between them. The inner sphere has radius $\mathrm{r}=2 \mathrm{~cm}$, and is placed at a potential $\mathrm{V}_{1}=-25$ volts; while the outer sphere has radius $\mathrm{r}=35 \mathrm{~cm}$, and is at a potential $\mathrm{V}_{2}=150$ volts.
i) Using Laplace's equations, solve for potential $V$ in the region between the spheres
ii) Determine the electric field intensity, $\vec{E}$ in the region between the spheres.
iii) Find the surface charge on each sphere.
iv) Determine the capacitance between the spheres
b) A long straight non-magnetic conductor of 0.2 mm radius carries a uniformlydistributed current of 2A dc. Determine:
i) The current density $\vec{J}$ within the conductor
ii) The magnetic field intensity $\vec{H}$ within the conductor. Use Ampere's circuital law
iii) That $\vec{J}=\vec{\nabla} X \vec{H}$ inside the conductor
iv) The magnetic field intensity $\vec{H}$ outside the conductor. Use Ampere's circuital law
v) That $\vec{J}=\vec{\nabla} X \vec{H}$ outside the conductor

## Question 4 (25 Marks)

a) In a region with cylindrical symmetry, the conductivity, $\sigma=1500 e^{-150 \rho} \mathrm{~S} / \mathrm{m}$. If an electrostatic field of $\vec{E}=30 \hat{z} V / m$, is present, determine:
i) The expression for the current density, $\vec{J}$.
ii) The total current leaving the surface defined by $\rho<\infty, z=0,0<\phi<2 \pi$.
iii) The magnetic field intensity, $\vec{H}$.
b) A surface current sheet $\vec{K}=9 \hat{y} A / m$ is located in the plane $z=0$, the interface between region $1, z<0$, with relative permeability $\mu_{r}=4$; and region $2, z>0$, with $\mu_{r}$ =3. If $\vec{H}_{2}=14.5 \hat{x}+8.0 \hat{z} A / m$ determine $\vec{H}_{1}$.
c) A torroid is constructed of a magnetic material having a cross-sectional area of $2.5 \mathrm{~cm}^{2}$ and an effective length of 8 cm . There is also a short air gap of 0.25 mm length and an effective area of $2.8 \mathrm{~cm}^{2}$. An mmf of 200 Ampere-turns is applied to the magnetic circuit. Calculate the total flux in the torroid if:
i) The magnetic material is assumed to have infinite permeability
ii) The magnetic material is assumed to be linear with relative permeability $\mu_{\mathrm{r}}=1000$.



SNOIIVłヨdo yoljun

## Useful mathematical tables

## C. 1 A brief list of series

$$
\begin{aligned}
& (1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3}+\cdots|x|<1 \\
& (1-x)^{n}=1-n x+\frac{n(n-1)}{2!} x^{2}-\frac{n(n-1)(n-2)}{3!} x^{3}+\cdots|x|<1 \\
& (1-x)^{-n}=1+n x+\frac{n(n+1)}{2!} x^{2}+\frac{n(n+1)(n+2)}{3!} x^{3}+\cdots|x|<1 \\
& 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots=\infty \\
& 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots=\ln (2) \\
& 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots=\frac{\pi}{4} \\
& 1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots=\frac{\pi^{2}}{6} \\
& 1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\cdots=\frac{\pi^{2}}{12} \\
& 1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\cdots=\frac{\pi^{2}}{8} \\
& \sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots \\
& \cos (x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \\
& \ln (1+x)=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n} \\
& \text { for all } x
\end{aligned}
$$

## :. 2 A list of trigonometric identities

$$
\begin{aligned}
& e^{\theta}=\cosh (\theta)+\sinh (\theta)=1+\theta+\frac{\theta^{2}}{2!}+\frac{\theta^{3}}{3!}+\frac{\theta^{4}}{4!}+\cdots \\
& e^{j \theta}=\cos (\theta)+j \sin (\theta) \quad \text { where } j=\sqrt{-1} \\
& \cosh (\theta)=\frac{1}{2}\left[e^{\theta}+e^{-\theta}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \sinh (\theta)=\frac{1}{2}\left[e^{\theta}-e^{-\theta}\right] \\
& \cos (\theta)=\frac{1}{2}\left[e^{j \theta}+e^{-j \theta}\right] \\
& \sin (\theta)=\frac{1}{2 j}\left[e^{j \theta}-e^{-j \theta}\right] \\
& \sin (-\alpha)=-\sin (\alpha) \quad \sin (\alpha)=\cos (\alpha-\pi / 2) \\
& \cos (-\alpha)=\cos (\alpha) \quad \cos (\alpha)=-\sin (\alpha-\pi / 2) \\
& \cosh (j \alpha)=\cos (\alpha) \\
& \sinh (j \alpha)=j \sin (\alpha) \\
& \cos (j \beta)=\cosh (\beta) \\
& \sin (j \beta)=j \sinh (\beta) \\
& \sinh (\alpha+\beta)=\sinh (\alpha) \cosh (\beta)+\cosh (\alpha) \sinh (\beta) \\
& \cosh (\alpha+\beta)=\cosh (\alpha) \cosh (\beta)+\sinh (\alpha) \sinh (\beta) \\
& \sinh (\alpha+j \beta)=\sinh (\alpha) \cos (\beta)+j \cosh (\alpha) \sin (\beta) \\
& \cosh (\alpha+j \beta)=\cosh (\alpha) \cos (\beta)+j \sinh (\alpha) \sin (\beta) \\
& \sin (\alpha+j \beta)=\sin (\alpha) \cosh (\beta)+j \cos (\alpha) \sinh (\beta) \\
& \sin (\alpha-j \beta)=\sin (\alpha) \cosh (\beta)-j \cos (\alpha) \sin (\beta) \\
& \cos (\alpha+j \beta)=\cos (\alpha) \cosh (\beta)-j \sin (\alpha) \sinh (\beta) \\
& \cos (\alpha-j \beta)=\cos (\alpha) \cosh (\beta)+j \sin (\alpha) \sinh (\beta) \\
& \sin (\alpha+\beta)=\sin (\alpha) \cos (\beta)+\cos (\alpha) \sin (\beta) \\
& \cos (\alpha+\beta)=\cos (\alpha) \cos (\beta)-\sin (\alpha) \sin (\beta) \\
& \sin (2 \alpha)=2 \sin (\alpha) \cos (\alpha) \\
& \sin (3 \alpha)=3 \sin (\alpha)-4 \sin ^{3}(\alpha) \\
& \cos (2 \alpha)=\cos ^{2}(\alpha)-\sin ^{2}(\alpha) \\
& =2 \cos ^{2}(\alpha)-1 \\
& =1-2 \sin ^{2}(\alpha) \\
& \cos (3 \alpha)=4 \cos ^{3}(\alpha)-3 \cos (\alpha) \\
& \sin ^{2}(\alpha)+\cos ^{2}(\alpha)=1 \\
& 1+\tan ^{2}(\alpha)=\sec ^{2}(\alpha) \quad 1+\cot ^{2}(\alpha)=\csc ^{2}(\alpha) \\
& \sin ^{2}(\alpha)=\frac{1}{2}(1-\cos (2 \alpha)) \\
& \cos ^{2}(\alpha)=\frac{1}{2}(1+\cos (2 \alpha)) \\
& \sin ^{3}(\alpha)=\frac{1}{4}(3 \sin (\alpha)-\sin (3 \alpha)) \\
& \cos ^{3}(\alpha)=\frac{1}{4}(3 \cos (\alpha)+\cos (3 \alpha)) \\
& 2 \sin (\alpha) \cos (\beta)=\sin (\alpha+\beta)+\sin (\alpha-\beta) \\
& 2 \cos (\alpha) \cos (\beta)=\cos (\alpha+\beta)+\cos (\alpha-\beta) \\
& 2 \sin (\alpha) \sin (\beta)=\cos (\alpha-\beta)-\cos (\alpha+\beta) \\
& \tan (\alpha+\beta)=\frac{\tan (\alpha)+\tan (\beta)}{1-\tan (\alpha) \tan (\beta)}
\end{aligned}
$$

## C. 3 A list of indefinite integrals

In the list of integrals that follows, $C$ is simply a constant of integration.

$$
\begin{aligned}
& \text { Let } X=\sqrt{a^{2}+x^{2}} \\
& \int x^{1 / 2} d x=\frac{2}{3} x^{3 / 2}+C \\
& \int \frac{d x}{\sqrt{x}}=2 \sqrt{x}+C \\
& \int X d x=\frac{1}{2} x X+\frac{a^{2}}{2} \ln |x+X|+C \\
& \int x X d x=\frac{1}{3} X^{3}+C \\
& \int \frac{d x}{X}=\ln [x+X]+C \\
& \int \frac{d x}{X^{3}}=\frac{1}{a^{2}} \frac{x}{X}+C \\
& \int \frac{d x}{X^{5}}=\frac{1}{a^{4}}\left[\frac{x}{X}-\frac{1}{3} \frac{x^{3}}{X^{3}}\right]+C \\
& \int \frac{x d x}{X}=X+C \\
& \int \frac{x d x}{X^{3}}=-\frac{1}{X}+C \\
& \int \frac{x d x}{X^{5}}=-\frac{1}{3 X^{3}}+C \\
& \int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \tan ^{-1}(x / a)+C \\
& \int \frac{d x}{\left(a^{2}+x^{2}\right)^{2}}=\frac{x}{2 a^{2}\left(a^{2}+x^{2}\right)}+\frac{1}{2 a^{3}} \tan ^{-1}(x / a)+C \\
& \int \frac{x d x}{a^{2}+x^{2}}=\frac{1}{2} \ln \left|a^{2}+x^{2}\right|+C \\
& \int \frac{x d x}{\left(a^{2}+x^{2}\right)^{2}}=-\frac{1}{2\left(a^{2}+x^{2}\right)}+C \\
& \int \frac{d x}{a^{2}-x^{2}}=\frac{1}{2 a} \ln |(a+x) /(a-x)|+C=\frac{1}{a} \tanh ^{-1}(x / a)+C \\
& \int \frac{x d x}{\left(a^{2}-x^{2}\right)}=-\frac{1}{2} \ln \left|a^{2}-x^{2}\right|+C \\
& \int \sin (a x) d x=-\frac{1}{a} \cos (a x)+C \\
& \int \cos (a x) d x=\frac{1}{a} \sin (a x)+C \\
& \int \sin ^{2}(a x) d x=\frac{x}{2}-\frac{\sin (2 a x)}{4 a}+C
\end{aligned}
$$

## Appendix C Useful mathematical tables

$$
\begin{aligned}
& \int \cos ^{2}(a x) d x=\frac{x}{2}+\frac{\sin (2 a x)}{4 a}+C \\
& \int \sin (a x) \cos (b x) d x=-\frac{\cos (a+b) x}{2(a+b)}-\frac{\cos (a-b) x}{2(a-b)}, \quad a \neq \pm b \\
& \int \sin (a x) \sin (b x) d x=\frac{\sin (a-b) x}{2(a-b)}-\frac{\sin (a+b) x}{2(a+b)}, \quad a \neq \pm b \\
& \int \cos (a x) \cos (b x) d x=\frac{\sin (a-b) x}{2(a-b)}+\frac{\sin (a+b) x}{2(a+b)}, \quad a \neq \pm b \\
& \int \sin (a x) \cos (a x) d x=-\frac{\cos (2 a x)}{4 a}+C \\
& \int \sin ^{n}(a x) \cos (a x) d x=\frac{\sin ^{n+1}(a x)}{(n+1) a}+C, \quad n \neq-1 \\
& \int \tan (a x) d x=-\frac{1}{a} \ln |\cos (a x)|+C \\
& \int \cot (a x) d x=\frac{1}{a} \ln |\sin (a x)|+C \\
& \int x \sin (a x) d x=\frac{1}{a^{2}} \sin (a x)-\frac{x}{a} \cos (a x)+C \\
& \int x \cos (a x) d x=\frac{1}{a^{2}} \cos (a x)+\frac{x}{a} \sin (a x)+C \\
& \int \tan ^{2}(a x) d x=\frac{1}{a} \tan (a x)-x+C \\
& \int \cot ^{2}(a x) d x=-\frac{1}{a} \cot (a x)-x+C \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}+C \\
& \int b^{a x} d x=\frac{1}{a \ln (b)} b^{a x}+C \\
& \int x e^{a x} d x=\frac{e^{a x}}{a^{2}}(a x-1)+C \\
& \int x^{n} e^{a x} d x=\frac{1}{a} x^{n} e^{a x}-\frac{n}{a} \int x^{n-1} e^{a x} d x \\
& \int e^{a x} \sin (b x) d x=\frac{e^{a x}}{a^{2}+b^{2}}[a \sin (b x)-b \cos (b x)]+C \\
& \int e^{a x} \cos (b x) d x=\frac{e^{a x}}{a^{2}+b^{2}}[a \cos (b x)+b \sin (b x)]+C \\
& \int \ln (a x) d x=x \ln (a x)-x+C \\
& \int x^{n} \ln (a x) d x=\frac{x^{n+1}}{n+1} \ln (a x)-\frac{x^{n+1}}{(n+1)^{2}}+C \quad n \neq-1 \\
& \int \frac{1}{x} \ln (a x) d x=\frac{1}{2}[\ln (a x)]^{2}+C \\
& \int \sinh (a x) d x=\frac{1}{a} \cosh (a x)+C
\end{aligned}
$$

$$
\begin{aligned}
& \int \cosh (a x) d x=\frac{1}{a} \sinh (a x)+C \\
& \int \tanh (a x) d x=\frac{1}{a} \ln [\cosh (a x)]+C \\
& \int \operatorname{coth}(a x) d x=\frac{1}{a} \ln |\sinh (a x)|+C \\
& \int \operatorname{sech}(a x) d x=\frac{1}{a} \sin ^{-1}[\tanh (a x)]+C \\
& \int \operatorname{csch}(a x) d x=\frac{1}{a} \ln |\tanh (a x / 2)|+C \\
& \int \sinh ^{2}(a x) d x=\frac{\sinh (2 a x)}{4 a}-\frac{x}{2}+C \\
& \int \cosh ^{2}(a x) d x=\frac{\sinh (2 a x)}{4 a}+\frac{x}{2}+C \\
& \int \tanh ^{2}(a x)=x-\frac{1}{a} \tanh (a x)+C \\
& \int \operatorname{coth}^{2}(a x) d x=x-\frac{1}{a} \operatorname{coth}(a x)+C \\
& \int \operatorname{sech}^{2}(a x) d x=\frac{1}{a} \tanh (a x)+C \\
& \int \operatorname{csch}^{2}(a x) d x=-\frac{1}{a} \operatorname{coth}(a x)+C
\end{aligned}
$$

## C. 4 A partial list of definite integrals

$$
\begin{aligned}
& \int_{0}^{\infty} e^{-a x} d x=\frac{1}{a} \quad(a>0) \\
& \int_{0}^{\infty} x e^{-a x} d x=\frac{1}{a^{2}} \quad(a>0) \\
& \int_{0}^{\infty} x^{2} e^{-a x} d x=\frac{2}{a^{3}} \quad(a>0) \\
& \int_{0}^{\infty} x^{n} e^{-a x} d x=\frac{n!}{a^{n+1}} \quad(a>0, n>-1) \\
& \int_{0}^{\infty} x^{1 / 2} e^{-a x} d x=\frac{1}{2 a} \sqrt{\pi / a} \quad(a>0) \\
& \int_{0}^{\infty} x^{-1 / 2} e^{-a x} d x=\sqrt{\pi / a} \quad(a>0) \\
& \int_{0}^{\infty} e^{-a x} \sin (b x) d x=\frac{b}{a^{2}+b^{2}} \quad(a>0) \\
& \int_{0}^{\infty} e^{-a x} \cos (b x) d x=\frac{a}{a^{2}+b^{2}} \quad(a>0) \\
& \int_{0}^{\infty} x e^{-a x} \sin (b x) d x=\frac{2 a b}{\left(a^{2}+b^{2}\right)^{2}} \quad(a>0)
\end{aligned}
$$

## Appendix C Useful mathematical tables

$$
\begin{aligned}
& \int_{0}^{\infty} x e^{-a x} \cos (b x) d x=\frac{a^{2}-b^{2}}{\left(a^{2}+b^{2}\right)^{2}} \quad(a>0) \\
& \int_{0}^{2 \pi} \sin (a x) d x=0 \quad(a=1,2,3, \ldots) \\
& \int_{0}^{2 \pi} \cos (a x) d x=0 \quad(a=1,2,3, \ldots) \\
& \int_{0}^{2 \pi} \sin ^{2}(a x) d x=\pi \quad(a=1,2,3, \ldots) \\
& \int_{0}^{2 \pi} \cos ^{2}(a x) d x=\pi \quad(a=1,2,3, \ldots) \\
& \int_{0}^{\pi} \cos (a x) d x=0 \quad(a=1,2,3, \ldots) \\
& \int_{0}^{\pi} \sin (a x) d x=\frac{1}{a}[1-\cos (a \pi)] \quad(a=1,2,3, \ldots) \\
& \int_{0}^{\pi} \sin ^{2}(a x) d x=\frac{\pi}{2} \quad(a=1,2,3, \ldots) \\
& \int_{0}^{\pi} \cos ^{2}(a x) d x=\frac{\pi}{2} \quad(a=1,2,3, \ldots) \\
& \int_{0}^{\pi} \sin (a x) \sin (b x)=0 \quad a \neq b(a \text { and } b \text { are integers }) \\
& \int_{0}^{\pi} \cos (a x) \cos (b x)=0 \quad a \neq b(a \text { and } b \text { are integers }) \\
& \int_{0}^{\pi} \sin (a x) \cos (b x)=0 \quad a=b(a \text { and } b \text { are integers }) \\
& =0 \quad a \neq b \text { but }(a+b) \text { even } \\
& =\frac{2 a}{a^{2}-b^{2}} \quad a \neq b \text { but }(a+b) \text { odd } \\
& \int_{0}^{\pi / 2} \sin (a x) d x=\frac{1}{a}[1-\cos (a \pi / 2)] \\
& \int_{0}^{\pi / 2} \cos (a x) d x=\frac{1}{a} \sin (a \pi / 2) \\
& \int_{0}^{\pi / 2} \sin ^{2}(a x) d x=\frac{\pi}{4} \quad(a=1,2,3, \ldots) \\
& \int_{0}^{\pi / 2} \cos ^{2}(a x) d x=\frac{\pi}{4} \quad(a=1,2,3, \ldots)
\end{aligned}
$$

C. 6 Some exact and approximate expressions for TEM waves in lossy media

|  | Exact | For good dielectric $\frac{\pi}{w s} \ll 1$ | For good Conductor $\frac{\digamma}{\omega \varepsilon} \gg 1$ |
| :---: | :---: | :---: | :---: |
| Attenuation constant ( $\mathrm{Np} / \mathrm{m}$ ) | $\alpha=\operatorname{Re}\left(j \omega \sqrt{\mu \varepsilon\left(1-j \frac{\sigma}{\omega \varepsilon}\right)}\right)$ | $\alpha=\frac{\sigma}{2} \sqrt{\frac{\mu}{\varepsilon}}$ | $\alpha=\sqrt{\frac{\omega \bar{\mu} \sigma}{2}}$ |
| Phase constant (rad/m) | $\beta=\operatorname{Im}\left(j \omega \sqrt{\mu \varepsilon\left(1-j \frac{\sigma}{\omega \varepsilon}\right)}\right)$ | $\beta=\omega \sqrt{\mu \varepsilon}$ | $\beta=\sqrt{\frac{\omega \bar{\mu} \sigma}{2}}$ |
| Intrinsic impedance ( $\Omega$ ) | $\hat{\eta}=\sqrt{\frac{\mu}{\varepsilon}}=\sqrt{\frac{j \omega \mu}{\sigma+j \omega \varepsilon}}$ | $\eta=\sqrt{\frac{\mu}{\varepsilon}}$ | $\hat{\eta}=(1+j) \sqrt{\frac{\omega \mu}{2 \sigma}}$ |
| Wavelength (m) | $\lambda=\frac{2 \pi}{\beta}$ | $\lambda=\frac{2 \pi}{\omega \sqrt{\bar{\mu}}}$ | $\lambda=2 \pi \sqrt{\frac{2}{\omega \mu \sigma}}$ |
| Wave velocity | $u_{p}=\frac{\omega}{\beta}$ | $u_{p}=\frac{1}{\sqrt{\mu \bar{\varepsilon}}}$ | $u_{p}=\sqrt{\frac{2 \omega}{\mu \sigma}}$ |
| Skin depth (m) | $\delta_{c}=\frac{1}{\alpha}$ | $\delta_{c}=\frac{2}{\sigma} \sqrt{\frac{\varepsilon}{\mu}}$ | $\delta_{c}=\sqrt{\frac{2}{\omega \mu \sigma}}$ |

## C. 7 Some physical constants

| Constant | Symbol | Value |
| :--- | :--- | :--- |
| Velocity of light in vacuum | $c$ | $2.988 \times 10^{8} \mathrm{~m} / \mathrm{s}$ |
| Electronic charge (magnitude) | $\|e\|$ | $1.602 \times 10^{-19} \mathrm{C}$ |
| Electronic mass | $m$ | $9.109 \times 10^{-31} \mathrm{~kg}$ |
| Electronic charge to mass ratio | $\|e\| / m$ | $1.759 \times 10^{11} \mathrm{C} / \mathrm{kg}$ |
| Permeability of free space | $\mu_{0}$ | $4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$ |
| Permittivity of free space | $\varepsilon_{0}$ | $8.854 \times 10^{-12} \approx \frac{10^{-9}}{36 \pi} \mathrm{~F} / \mathrm{m}$ |
| Electron volt (energy) | $\|e\| V$ | $1.602 \times 10^{-19} \mathrm{~J}$ |
| Boltzmann constant | $k$ | $1.381 \times 10^{-23} \mathrm{~J} / \mathrm{K}$ |
| Planck's constant | $H$ | $6.626 \times 10^{-34} \mathrm{~J} . \mathrm{s}$ |

