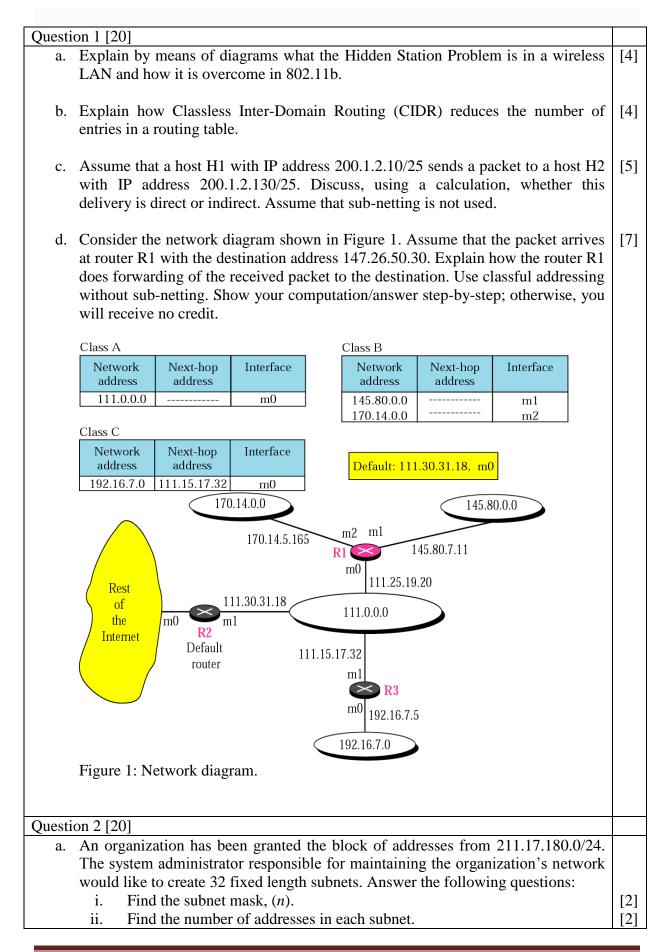


University of KwaZulu-Natal Electrical, Electronics and Computer Engineering Examination: October, 2015 Subject, Course code: Internet Engineering: ENEL4IE

Examiners: Dr. T Quazi (Internal Examiner)


Prof. S Masupe (External Examiner)

Duration: Two Hours

Total Marks: 80

Instructions to candidates:

- 1) Attempt all questions. Questions carry equal marks.
- 2) Scientific Calculators may be used.
- 3) Show your computations step-by-step; otherwise, you will receive no credit.
- 4) NO NOTES/reference sheets of any form are allowed in this examination.

	iii. Find the first and last address in the first subnet.	[3]				
	iv. Find the first and the last address in the last subnet, (subnet 32).	[3]				
b.	b. If the fields in the ICMP timestamp-request and timestamp-reply hold the following values, what is the round trip time?					
	Original timestamp = 46; Receive timestamp = 59; Transmit timestamp = 60; Return time = 67					
с.	 Consider sending a 1500-byte datagram into a link that has a Maximum Transfer Unit (MTU) of 500 bytes. Suppose the original datagram is stamped with the identification number 1. Assume that IPv4 with a header size of 20 bytes is used. How many fragments are generated? In addition to the identification number, what are the other two fields in the IP datagram that are related to fragmentation? What are the values of the fragment offsets? 	[2] [2] [2]				
Question 3 [20]						
a.	a. Explain, with examples of each, the differences between Intra- and Inter- Domain [4 routing protocols.					
b.	b. Give the pseudo code for the algorithm used in Link State Routing. [8					
c. Use the algorithm described in Question 3b. to find the shortest paths for node A in the network shown in Figure 2. Show the resulting routing table for Node A.						
	A = 2 B = 5 C = 3 A = 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4					
Questi	on 4 [20]					
a. Assume that an IP header without options is divided into 16-bit sections. Explain [6 and compute the checksum for the IP header in Figure 3 shown below.						
	4 5 0 28					
	1 0 0					
10:12:14:5						
12:6:7:9 Figure 3: IP header.						
b. Assume that a sender at the transport layer is trying to get 10 packets through to a receiver and every 5 th packet is lost. How many transmissions would be required						

	if the		
	i. Stop-and-Wait,		
	ii. Go-Back-3 or		
	iii. Selective Repeat		
	algorithm is being used. Clearly show how the final number is derived.		
c.	Assume that the TCP connection between a client and a server is in the CLOSED state. Show, by means of a time-line diagram, the sequence of states and the interaction between the client and server as the connection goes from the CLOSED to the ESTABLISHED state.	[5]	
d.	Discuss why UDP would be preferred over TCP for a Voice over IP application?	[3]	

USEFUL INFORMATION

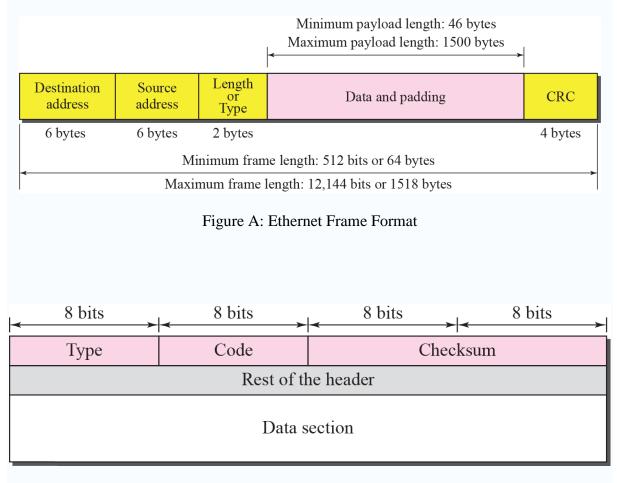
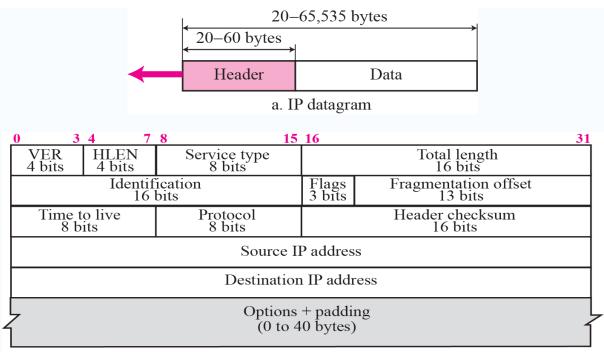
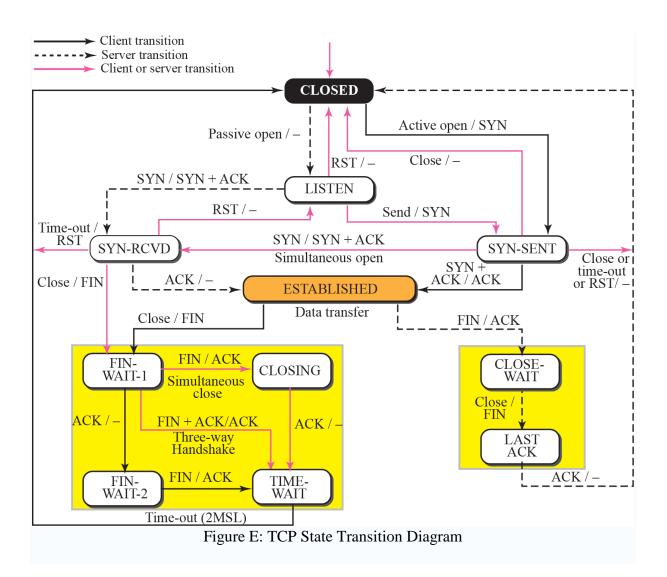



Figure B: General Format of ICMP Messages



b. Header format

Figure C: IP Datagram (a) and Header (b) Format

ге Туре	Protocol Type					
Protocol length	Operation Request 1, Reply 2					
Sender hardware address (For example, 6 bytes for Ethernet)						
Sender protocol address (For example, 4 bytes for IP)						
Target hardware address (For example, 6 bytes for Ethernet) (It is not filled in a request)						
Target protocol address (For example, 4 bytes for IP)						
	Protocol length Sender hardw (For example, 6 b Sender proto (For example, Target hardw (For example, 6 by (It is not filled Target proto					

Figure D: ARP Packet Format

