University of KwaZulu-Natal School of Engineering Electrical, Electronic & Computer Engineering

Main Examinations: **December 2016** Course & code: **Communications: ENEL3CO**

Duration: Three Hour	S	Total Marks: 100
Examiner/s:	Mr S Rezenom Dr N Pillay Prof T.J.O Afullo, Dr P Kumar	(Internal) (Internal) (Independent)
Instructions: 1	This paper consists of four questions (Two in Section A and two in Section B). Please answer all questions. <i>Use separate answer books for each section.</i>	
2 3 4	relevant assumptions must be Programmable calculators may	I in full for part marks to be awarded. All documented clearly. be used – all memory must be cleared. ed. Useful data is attached at the back of

SECTION A Question 1

[25]

1.1 For the waveform shown below, determine the following:

- A. The Fourier series coefficients of the first five harmonic frequencies. [8]
- B. Plot the single-sided amplitude spectrum of the first five harmonic frequencies. [2]
- 1.2 The amplitude frequency response of a linear time invariant system is given by:

$$|H(f)| = \begin{cases} 1, & -4f_0 \le f \le 4f_0 \\ \frac{1}{2}, & \text{elsewhere} \end{cases}$$

and the phase response is

$$\angle H(f) = \begin{cases} \frac{\pi}{2}, & f \ge 0\\ -\frac{\pi}{2}, & \text{elsewhere} \end{cases}$$

The input signal x(t) is given by

$$x(t) = \frac{1}{2}\sin(\omega_0 t + \frac{\pi}{2}) + \frac{1}{2}\cos(\omega_0 t + \frac{\pi}{2}) + \frac{1}{2}\cos(2\omega_0 t) + \frac{1}{2}\cos(6\omega_0 t)$$

Determine the following:

- A. The input power spectral density. [3]
- B. The output power spectral density. [4]
- C. The signal at the output of the filter.

1.3 Determine the convolution of the signals
$$x(t) = 2\Pi(t+2)$$
 and $x(t) = 2\Pi(\frac{t-1}{2})$. [3]

Question 2

2.1 The figure below shows a receiver system for satellite signals and is composed of an antenna, a feeder cable and a two-stage circuitry. The loss factor of the cable connecting the antenna to the first stage of the receiver is 0.4 dB, and each stage has a bandwidth of 27 MHz. The effective noise temperature of the antenna is 50 K.

- A. Determine the effective noise temperature of the system.
- B. To guarantee a successful reception of the signal from the satellite, a minimum signalto-noise ratio of 25 dB is required. Determine whether there would be a successful reception if the input signal power at the receiver is -90 dBW.
- 2.2 A downlink satellite communication system has the following parameters.

[5]

[5]

[2]

	Frequency Received power Receiver Gain Transmitter Gain Distance System losses Receiver noise temperature Bandwidth	10 GHz -116 dBW 40 dB 30 dB 36000 km 5 dB 200 K 10 MHz		
Α.	A. Determine the transmit power level of the satellite station.			
В.	B. Determine the EIRP.			
C.	Determine the carrier-to-noise ratio.			
2.3	The autocorrelation function of the random process is given by $R(\tau) = 1 + \cos(\tau) + e^{- \tau }$. Determine the mean and variance of the random process.			
	ION B tion 3		[25]	
3.1	1 Draw and label the spectrum of the composite baseband signal of stereophonic FM. A diode-bridge modulator is used to yield the DSB-SC component. Draw the circuit and show that the output is in fact DSB-SC. (You do not need to perform a Fourier analysis from first principles).			
3.2	Derive the direct method of generation for FM. Give an expression for the maximum capacitance deviation.			
3.3	In a binary pulse code modulation system, the output SQNR is to be held to a minimum of 40 dB. The uniform quantizer has <i>L</i> levels.			
Α.	Prove that the SQNR is given as $\frac{3}{2}L^2$.			
В.	Determine the number of required levels for the quantizer.			
3.4	VSB-AM is employed in analogue television to preserve spectrum space. Sketch the transmitter filter response and the relative demodulator output for such a system, where the baseband signal has a bandwidth of 4.5 MHz.			
Ques	tion 4		[25]	
4.1	A carrier is angle modulated by the sum of two sinusoids, $\beta_1 \sin w_1 t$ and $\beta_2 \sin w_2 t$, where the message frequencies are not harmonically related.			
A.	Write an expression for the modulated signal.			

- B. Find the spectrum of the signal.
- 4.2 Consider the following system:

- A. Given the message signal $m(t) = 0.5 \cos(2\pi 10^4 t)$, design the above system to achieve a single-sided spectral component of $10^6 + 10^4$ Hz at the output with amplitude 2 Volts. Draw the complete system and write out the signals at Points 1, 2, 3, 4 and 5. The carriers are not specified.
- B. A student is able to design a quadrature phase shifter, signal summer, envelope detector, frequency doublers and quadruplers. Suggest a possible option for recovery of the message. Prove the method.

[8]

[10]

DATASHEET

Propagation loss factor = $\left(\frac{\lambda}{4\pi d}\right)^2$ where λ is the transmission wavelength and d is the distance of the satellite from the earth station.

 $G_R = \frac{4\pi}{\lambda^2} A_R$, where A_R is the effective antenna aperture area.

Boltzmann's constant $k = 1.38 \times 10^{-23} J/K$

Standard temperature T_o = 290 K

Speed of light = 3×10^8 m/s

TABLE (of f	OURIER	TRANSF	ORMS
---------	------	--------	--------	------

$ \frac{1}{\delta(f)} \\ e^{-j2\pi f t_0} \\ \delta(f - f_0) \\ \frac{1}{2}\delta(f - f_0) + \frac{1}{2}\delta(f + f_0) \\ - \frac{1}{2j}\delta(f + f_0) + \frac{1}{2j}\delta(f - f_0) \\ \operatorname{sinc}(f) $
$e^{-j2\pi f t_0} \\ \delta(f - f_0) \\ \frac{1}{2}\delta(f - f_0) + \frac{1}{2}\delta(f + f_0) \\ - \frac{1}{2j}\delta(f + f_0) + \frac{1}{2j}\delta(f - f_0)$
$e^{-j2\pi f t_0} \\ \delta(f - f_0) \\ \frac{1}{2}\delta(f - f_0) + \frac{1}{2}\delta(f + f_0) \\ - \frac{1}{2j}\delta(f + f_0) + \frac{1}{2j}\delta(f - f_0)$
$\frac{\frac{1}{2}\delta(f - f_0) + \frac{1}{2}\delta(f + f_0)}{-\frac{1}{2j}\delta(f + f_0) + \frac{1}{2j}\delta(f - f_0)}$
$-\frac{1}{2j}\delta(f+f_0) + \frac{1}{2j}\delta(f-f_0)$
$-\frac{1}{2j}\delta(f+f_0) + \frac{1}{2j}\delta(f-f_0)$
$\Pi(f)$
$\operatorname{sinc}^2(f)$
$\Lambda(f)$
$\frac{1}{\alpha + j2\pi f}$
1
$\frac{(\alpha+j2\pi f)^2}{2\alpha}$
$\frac{2\alpha}{\alpha^2 + (2\pi f)^2}$
$e^{-\pi f^2}$
$1/(j\pi f)$
$\frac{1}{2}\delta(f) + \frac{1}{i^{2\pi f}}$
$j2\pi f$
$(j2\pi f)^n$
$-j\pi \operatorname{sgn}(f)$
$\frac{1}{T_0}\sum_{n=-\infty}^{n=+\infty}\delta(f-\frac{n}{T_0})$

, ,		<u> </u>
10	-0.2459 0.04347 0.2546 0.05838 -0.2196 -0.2146 0.2167 0.3179 0.3179 0.2167 0.3179 0.2167 0.2199 0.201567 0.004508 0.001567	$ \begin{array}{c c} & 1.0 \\ & J_n(\beta) \\ & 0.8 \end{array} \end{array} $
6	0.09033 0.2453 0.1448 -0.1809 -0.1809 0.2655 -0.05504 0.2043 0.3275 0.3275 0.3275 0.3275 0.3275 0.2043 0.2149 0.2149 0.01286 0.001286	$0.6 - \int_{J_1(\beta)}^{J_1(\beta)} J_2(\beta) + \int_{J_2(\beta)}^{J_2(\beta)} J_2(\beta) + \int_{J_2(\beta$
x	0.1717 0.2346 -0.1130 -0.2911 -0.1054 0.1858 0.3376 0.3376 0.3376 0.3235 0.02560 0.009624 0.001019	0.4 = 0.2
7	0.3001 -0.004683 -0.3014 -0.1676 0.1578 0.3392 0.3392 0.3392 0.2336 0.1280 0.05892 0.008335 0.002656	
¢	0.1506 -0.2767 -0.2429 0.1148 0.3576 0.3576 0.3576 0.2428 0.2428 0.2428 0.05653 0.005653 0.00564 0.002048	
ъ.	-0.1776 -0.3276 0.04657 0.3648 0.3912 0.3912 0.2611 0.05338 0.01841 0.001841 0.005520 0.005520	0 2 4 6 8 10 $\beta \longrightarrow$ Bessel Plots
4	-0.3971 -0.06604 0.3641 0.4302 0.2811 0.1321 0.04909 0.01518 0.004029	
£	-0.2601 0.3391 0.4861 0.3091 0.04303 0.01139 0.002547	Table of Useful Trignometric formulae $sin a cosb = 0.5[sin(a+b)+sin(a-b)]$ $cos a sin b = 0.5[sin(a+b)-sin(a-b)]$
2	0.2239 0.5767 0.3528 0.1289 0.03400 0.007040 0.001202	$\frac{\cos a \cos b = 0.5[\cos(a+b) + \cos(a-b)]}{\sin a \sin b = 0.5[\cos(a-b) - \cos(a+b)]}$
-	0.7652 0.4401 0.1149 0.01956 0.002477	$\sin a + \sin b = 2\sin\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right)$
0.5	0.9385 0.02060 0.002564	$\cos a + \cos b = 2\cos\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right)$
ii u	0 - 0 6 4 9 9 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$\frac{\sin(a\pm b) = \sin a \cos b \pm \cos a \sin b}{\cos(a\pm b) = \cos a \cos b \mp \sin a \sin b}$
	Table of Bessel values	