UNIVERSITY OF ${ }^{\text {m }}$
KWAZULU-NATAL
INYUVESI
Electrical, Electronic and
Computer Engineering ENEL4HB - High Voltage 2

Main Examination

October 2016

Instructions

- Answer all questions, show all working and include all necessary comments (it is your reasoning that is being assessed, not the numerical answer)
- Time allowed $=2$ hours
- Full marks $=100$

Question 1

Consider the insulator shown, the insulator consists of a fibreglass rod and a silicon rubber coating. The ends of the insulator have metal end fittings one of which is connected to a high voltage and the other connected to a tower.

Figure 1: Polymeric Insulator

- What are the advantages of polymeric insulators over ceramic insulators?
- Where would one expect the highest electric field to be and why?
- What are the issues with a high electric field? [Hint: Consider short term problems and long term problems in your answer]
- How would one measure if there are any problems?
- What can one do to lower the electric field? [Hint: Consider Gauss' law]

Question 2

Describe the 6 phases of the pollution flashover mechanism for ceramic insulators.
[12 Marks]
Describe two cases (different types of insulators, different types of pollution) where this mechanism is not applicable and why.
[3 Marks]
[Total Marks: 15]

Question 3

An overvoltage travels on a 132 kV overhead line with a propagation velocity of $v=0.8 c$ and steepness of $S=1500 \mathrm{kV} / \mu \mathrm{s}$. A metal oxide surge arrester is to be installed in front of a transformer with a $U_{B I L}=550 \mathrm{kV}$. The distance between the arrester and transformer is 25 m .

- Describe the operation and use of a metal oxide surge arrester for protection. [5 Marks]
- Determine the voltage at the transformer if the surge arrester has a residual voltage of 330 kV . [2 Marks]
- Comment on why there is an increase in voltage across the terminals of the transformer and whether the transformer is protected or not.
[4 Marks]
- Given that there is one incoming line with a single conductor and a span of 300 m , determine the protection distance that should be used and whether the transformer is currently protected or not.
[4 Marks]

Table 1: Performance factor for incoming overhead line

Line Type	Factor A (kV)
Transmission lines (1 ϕ to earth flashover)	
Single conductor	4500
Double conductor bundle	7000
Four conductor bundle	11000
Six and eight conductor bundle	17000

[Total Marks: 15]

Question 4

A 275 kV transmission tower with a height of 32 m has a surge impedance of 240Ω connected to a single shield wire of 480Ω and an earth resistance of 60Ω. The phase conductor is connected to the tower by a 2 m long insulator. The transmission tower is struck by lightning with a peak current of 30 kA . The coupling coefficient is 0.1 .

- Determine the peak voltage across the insulator string and if flashover occurs. (You may assume that the duration of the overvoltage is $2.5 \mu \mathrm{~s}$)
[9 Marks]
- Determine the number of insulator discs required if each has an expected flashover voltage of 125 kV in dry weather based on U_{50}.
[2 Marks]
- Determine the number of strikes of 30 kA to the a 100 km line if the ground flash density is 6 strikes per $\mathrm{km}^{2} /$ year and comment on what this means.
[5 Marks]
- Determine the peak voltage across the insulator if the earth resistance is decreased to 20Ω. [4 Marks]
[Total Marks: 20]

Question 5

A transmission line is situated in an area with ground flash density of 3 strikes $/ \mathrm{km}^{2} /$ year and has 2 shielding wires at a height of 35 m spaced 7.5 m apart and phase conductors at a height of 25 m . The phase conductor has an insulator flashover voltage $\left(U_{50}\right)$ of 820 kV and a surge impedance of 240Ω.

- Determine the number of strikes per 100 km per year to the line.
- Determine $I_{c r i t}$ (ignore the effect of the tower impedance).
- Using the equation for attractive radius, describe a shielding failure and the concept of 'perfect shielding'.
- Determine the optimal separation distance for 'perfect shielding'.
- Determine the probability of a lightning strike causing a shielding failure.
[Total Marks: 20]

Question 6

Sketch the standard partial discharge measurement system (including the device under test and measurement instrument) and discuss each component in the circuit. Include in your answer typical measurement quantities.
[Total Marks: 10]

Useful Formulae

Constants

Standard temperature: $t_{0}=20^{\circ} \mathrm{C}$
Standard pressure: $P_{0}=760$ torr
Permittivity of free space: $\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}$

Formulae

Electric field in layer k in a uniform dielectric with multiple layers and permittivities:

$$
E_{k}=\frac{V}{\frac{\varepsilon_{k}}{\varepsilon_{1}} d_{1}+\frac{\varepsilon_{k}}{\varepsilon_{2}} d_{2}+\ldots}
$$

Electric field in layer k in a coaxial system with multiple layers and permittivities:

$$
E_{k}=\frac{V}{r_{k}\left[\frac{\varepsilon_{k}}{\varepsilon_{1}} \ln \frac{r_{2}}{r_{1}}+\frac{\varepsilon_{k}}{\varepsilon_{2}} \ln \frac{r_{3}}{r_{2}}+\ldots\right]}
$$

Electric field in relation to a line charge q :

$$
\vec{E}=\frac{q}{2 \pi \varepsilon_{0} r} \angle \theta
$$

The equivalent bundle radius:

$$
r_{e q}=\left(n r R^{n-1}\right)^{\frac{1}{n}}
$$

Relationship between Q and V :

$$
\begin{aligned}
{[P][Q] } & =[V] \\
{[Q] } & =[P]^{-1}[V]
\end{aligned}
$$

Resultant electric field:

$$
\vec{E}_{R}=\frac{1}{2 \pi \varepsilon_{0}}[P]^{-1}[V]\left[\frac{1}{r} \angle \theta+\frac{1}{r^{\prime}} \angle \theta^{\prime}\right]
$$

Self potential coefficient:

$$
P_{i i}=\frac{1}{2 \pi \varepsilon_{0}} \ln \frac{2 h_{i}}{r_{i}}
$$

Mutual potential coefficient:

$$
P_{i j}=\frac{1}{2 \pi \varepsilon_{0}} \ln \frac{D_{i j}}{d_{i j}}
$$

$$
\begin{aligned}
D_{i j} & =\sqrt{\left(\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}+y_{j}\right)^{2}\right.} \\
d_{i j} & =\sqrt{\left(\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}\right.}
\end{aligned}
$$

Average bundle gradient:

$$
E_{a}=\frac{q}{n} \frac{1}{2 \pi \epsilon_{0} r}
$$

Average maximum bundle gradient:

$$
E_{a m}=E_{a}\left[1+(n-1) \frac{r}{R}\right]
$$

Peek's empirical expressions:

$$
\begin{array}{ll}
\left|E_{\text {positive }}\right|=33.7 m \delta\left(1+\frac{0.24}{\sqrt{\delta r_{c}}}\right) & {[\mathrm{kV} / \mathrm{cm}]} \\
\left|E_{\text {negative }}\right|=31 m \delta\left(1+\frac{0.308}{\sqrt{\delta r_{c}}}\right) & {[\mathrm{kV} / \mathrm{cm}]} \\
\left|E_{\text {acpeak }}\right|=29.8 m \delta\left(1+\frac{0.301}{\sqrt{\delta r_{c}}}\right) & {[\mathrm{kV} / \mathrm{cm}]}
\end{array}
$$

Relative air density:

$$
\delta=\frac{P}{P_{0}} \frac{273+t_{0}}{273+t}
$$

Voltage across cap and pin insulator string:

$$
V_{n}=V \frac{\sinh \sqrt{\frac{C_{p}}{C_{s}}} n}{\sinh \sqrt{\frac{C_{p}}{C_{s}}} N}
$$

Efficiency of cap and pin insulator:

$$
\eta=\frac{V}{N V_{N}}
$$

Method of determinants:
$\Delta=\operatorname{det}\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]=\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right|=a_{11} a_{22}-a_{21} a_{12}$

$$
\begin{aligned}
\Delta & =\operatorname{det}\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=\left|\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| \\
& =a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32} \\
& -a_{31} a_{22} a_{13}-a_{32} a_{23} a_{11}-a_{33} a_{21} a_{12}
\end{aligned}
$$

Probability of negative lightning stroke:

$$
P=\frac{1}{1+\left(\frac{I_{p}}{31}\right)^{2.6}}
$$

Average number of strikes to line:

$$
N_{s}=N_{g}\left(\frac{28 h^{0.6}+b}{10}\right)
$$

Attractive radius:

$$
R_{a}=0.67 h_{t}^{0.67} I^{0.74}
$$

Flashover current:

$$
I_{c r i t}=\frac{2 U_{50}}{Z_{0}}
$$

Shielding separation:

$$
X_{s p}=R_{s}-\sqrt{R_{p}^{2}-\left(Y_{s}-Y_{p}\right)^{2}}
$$

Reflection co-efficient:

$$
\rho_{r}=\frac{Z_{2}-Z_{1}}{Z_{1}+Z_{2}}
$$

Insulator flashover volt-time curve:

$$
U(t)=\left(400+\frac{710}{t^{0.75}}\right) W
$$

Switching impulse strength of airgaps:

$$
U_{50}=k \frac{3400}{1+\frac{8}{d}}
$$

Voltage at protected equipment:

$$
U_{\text {equip }}=U_{a}+\frac{2 \times(d+a) \times S}{v}
$$

Protective zone:

$$
L_{p}=\frac{N}{A}\left(\frac{U_{B I L}}{1.15}-U_{a}\right) \times L_{s p}
$$

Paschen's eqn:

$$
V_{b}=6.72 \sqrt{p d}+24.36(p d)
$$

