School of Engineering (Computer Engineering)

Course and Code: Real Time Computing - ENEL4RCH2

Duration: **TWO** hours

Maximum marks 100

Paper 1

Examiners:

Prof A. Bagula (External)

Mr. B. Naidoo (Internal)

SECTION A

(BASIC CONCEPTS)

- 1) What is the meaning of
 - a. "Mutual exclusion" and "critical section" in a real time system?

[5]

b. "Task arrival" and "Despatch"?

[5]

2) When do pre-emptive schedulers re-prioritise waiting tasks? Explain why.

[10]

SECTION B

(CYCLIC EXECUTIVES)

1) Consider the following schedule and write an interrupt driven, fully commented, energy-efficient CE for the schedule.

Use pseudo-code.

[10]

A B C B D B C B

2) Design a cyclic executive to schedule A=(2, 8, 8), B=(1, 6, 6), C=(1, 4, 4)

[20]

SECTION C

(BASIC SCHEDULING)

1) Consider the following processes. [15]

Process CPU time		Period Deadline	
Α	10	50	35
В	15	100	20
С	20	200	200

a. What is the difference in task prioritisation in DMA and RMA, and under what condition is RMA and DMA identical? [3]

b. Using RMA, what priorities are assigned to the above tasks? Are they schedulable if they all arrive simultaneously? Draw a scheduling diagram that indicates if task deadlines are met.

c. Using DMA, what priorities are assigned to the above tasks? Are they schedulable if they all arrive simultaneously? Draw a scheduling diagram that indicates if task deadlines are met. [6]

2) Consider the set of tasks below:

	C	P	D	
T ₁	1	8	8	
T ₂	2	5	5	
T ₃	4	10	10	

a. Show that the above are EDF schedulable.

[2]

b. Can EDF work without pre-emption? Explain.

[3]

[6]

- c. Draw the schedule (assume all tasks arrive at T=0) and indicate pre-emption events. Show each process on a different line and show the combined schedule below. [5]
- 3) Every scheduler was developed to address a specific type of scheduling problem. Consider the earliest deadline first scheduler. What is its underlying principle, its strengths, weaknesses and application domain? [10]

SECTION D

(PRIORITY INVERSION)

1) Using the diagram and table below explain, for each of the 12 steps, how PIP handles the three tasks that request one resource. [15]

Task	Priority	
Task1	High	
Task2	Medium	
Task3	Low	